AI精选付费资料包(37.4GB)夸克网盘资源_网盘资源_夸克网盘资源搜索_全盘搜
- file:Readme.md
- file:人工智能大纲升级版本.pdf
- file:10 GAN实战-2.flv
- file:3 生成对抗网络.flv
- file:8 WGAN-GP原理.flv
- file:2 画家的成长历程.flv
- file:4 纳什均衡-1.flv
- file:7 EM距离.flv
- file:6. 课时6 项目实战-时间序列预测问题.mp4
- file:5. 课时5 循环神经网络中Layer的使用-2.mp4
- file:10. 课时10 RNN训练难题—梯度弥散与梯度爆炸.mp4
- file:8. 课时8 LSTM基本原理-2.mp4
- file:Deep-Learning-with-PyTorch-Tutorials.zip
- file:4-卷积运算详解-4.mp4
- file:21-ResNet实战-2.mp4
- file:9-池化与采样操作讲解.mp4
- file:17-BatchNorm-2.mp4
- file:18-ResNet, DenseNet详解.mp4
- file:11-CIFAR100与VGG13实战-2.mp4
- file:5.mp4
- file:PyTorch-YOLOv3.zip
- file:NEU-DET.zip
- file:YOLO5.zip
- file:深度学习分割任务.pdf
- file:unet++.zip
- file:第四章:练手小项目-人体姿态识别demo.zip
- file:第五章:迁移学习.zip
- file:第三章:基于MASK-RCNN框架训练自己的数据与任务.zip
- file:第二章:MaskRcnn网络框架源码详解.zip
- file:1.任务需求与项目概述.mp4
- file:3-标签转格式脚本制作.mp4
- file:7-输出结果与项目总结.mp4
- file:5-项目参数配置.mp4
- file:2-数据与标签配置方法.mp4
- file:6-缺陷检测模型培训.mp4
- file:第16-17章notebook课件.zip
- file:第十五章:项目实战-答题卡识别判卷.zip
- file:第十八章:Opencv的DNN模块.zip
- file:第二十章:人脸关键点定位.zip
- file:1.用手机打开分享链接,点保存到网盘.png
- file:2.注册后半小时内保存,即得1T容量.png
- file:OpenCV书籍.rar
- file:53份人工智能行业报告.zip
- file:1311.2901v3_Visualizing and Understanding Convolutional Networks.pdf
- file:1412.2306v2_Deep Visual-Semantic Alignments for Generating Image Descriptions.pdf
- file:1311.2524v5_R_CNN.pdf
- file:1506.01497v3_Faster R-CNN.pdf
- file:1406.2661v1_Generative Adversarial Nets.pdf
- file:1506.02025_Spatial Transformer Networks.pdf
- file:1409.1556v6_VERY DEEP CONVOLUTIONAL Networks.pdf
- file:4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
- file:1512.03385v1_Deep Residual Learning for Image Recognition.pdf
- file:Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf
- file:13-额外补充-Resnet论文解读.mp4
- file:2. 2-图卷积与匹配的作用.mp4
- file:1. 1-关键点位置特征构建.mp4
- file:4. 3-局部特征热度图计算.mp4
- file:5. 4-基于图卷积构建人体拓扑关系.mp4
- file:论文集索引.jpg
- file:1. 课程介绍.mp4
- file:8. 7-BERT模型训练策略.mp4
- file:6. 5-输入数据特殊编码字符解析.mp4
- file:2. 1-论文讲解思路概述.mp4
- file:4. 3-模型在NLP领域应用效果.mp4
- file:源代码和PPT在Github下载.txt
- file:iccv15_tutorial_training_rbg.pdf
- file:FasterRcnn.zip
- file:Faster R-CNN Towards Real-Time Object Detection with Region Proposal Networks.pdf
- file:Python机器学习实训营.docx
- file:1-逻辑回归算法原理.mp4
- file:2-化简与求解.mp4
- file:4-坐标棋盘制作.mp4
- file:6-多分类-softmax.mp4
- file:2-概率结果随特征数值的变化.mp4
- file:5-分类决策边界展示分析.mp4
- file:5-信息增益率与gini系数.mp4
- file:6-DBSCAN可视化展示.mp4
- file:2-KMEANS工作流程.mp4
- file:3-独立同分布的意义.mp4
- file:7参数更新方法.mp4
- file:6-梯度下降通俗解释.mp4
- file:3-决策树与集成算法.pdf
- file:时间序列分析.pdf
- file:10-EM算法.pdf
- file:12-word2vec.pdf
- file:1-AI入学指南.pdf
- file:8-xgboost.pdf
- file:6-支持向量机.pdf
- file:超详细的计算机视觉书籍.zip
- file:机器学习导论 原书 第2版.pdf
- file:凸优化.pdf
- file:图解机器学习.pdf
- file:机器学习实践指南++案例应用解析+麦好.pdf
- file:机器学习在量化投资中的应用研究_汤凌冰著_北京:电子工业出版社_2014.11_13662591_P157.pdf
- file:深度学习技术图像处理入门 by 杨培文,胡博强 (z-lib.org).pdf
- file:《TensorFlow 2.0深度学习算法实战教材》-中文版教材分享.pdf
- file:《神经网络与深度学习》(邱锡鹏-20191121).pdf
- file:Tensorflow技术解析与实战.pdf
- file:cuda_10.0.130_411.31_win10.exe
- file:pycharm-community-2019.1.1.exe
- file:Anaconda3-2019.03-Windows-x86_64.exe
- file:cudnn-10.0-windows10-x64-v7.5.0.56 (1).zip
- file:cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.deb
- file:3-原始与变换坐标计算.mp4
- file:5-tesseract-ocr安装配置.mp4
- file:6-文档扫描识别效果.mp4
- file:3-图像数据预处理.mp4
- file:1-任务整体流程.mp4
- file:6-车位区域划分.mp4
- file:8-基于视频的车位检测.mp4
- file:1-COCO数据集与人体姿态识别简介.mp4
- file:10-RoiPooling层的作用与目的.mp4
- file:9-正负样本选择与标签定义.mp4
- file:7-Proposal层实现方法.mp4
- file:11-RorAlign操作的效果.mp4
- file:2-FPN网络架构实现解读.mp4
- file:4-基于不同尺度特征图生成所有框.mp4
- file:8-DetectionTarget层的作用.mp4
- file:论文解读-4-网络细节.mp4
- file:三代算法-1-物体检测概述.mp4
- file:三代算法-3-faster-rcnn概述.mp4
- file:0-Mask-Rcnn开源项目简介.mp4
- file:1-Labelme工具安装.mp4
- file:2-使用labelme进行数据与标签标注.mp4
- file:5-基于标注数据训练所需任务.mp4
- file:QQ截图20190624141231.png
- file:1.png
- file:7-得到线性回归方程.mp4
- file:逻辑回归-实验.zip
- file:决策树-代码实现.zip
- file:随机森林与集成算法-实验.zip
- file:模型评估方法.ipynb
- file:Python基础教程(第3版)高清英文版.pdf
- file:《跟着迪哥学 Python数据分析与机器学习实战》PDF+唐宇迪.pdf
- file:配套代码和数据集《跟着迪哥学 Python数据分析与机器学习实战》.zip
- file:深度学习之PyTorch物体检测实战.epub
- file:d2l-zh-pytorch.pdf
- file:Dive-into-DL-Pytorch.pdf
- file:动手学深度学习(2020.07.08).zip
- file:Deriving Neural Architectures from Sequence and Graph Kernels.pdf
- file:Diffusion-Convolutional Neural Networks.pdf
- file:A new model for learning in graph domains.pdf
- file:A Comparison between Recursive Neural Networks and Graph Neural Networks.pdf
- file:CelebrityNet- A Social Network Constructed from Large-Scale Online Celebrity Images.pdf
- file:Contextual Graph Markov Model- A Deep and Generative Approach to Graph Processing.pdf
- file:Geometric deep learning on graphs and manifolds using mixture model cnns.pdf
- file:Deep Sets.pdf
- file:Hierarchical Graph Representation Learning with Differentiable Pooling.pdf
- file:Learning Steady-States of Iterative Algorithms over Graphs.pdf
- file:Knowledge-Guided Recurrent Neural Network Learning for Task-Oriented Action Prediction.pdf
- file:Covariant Compositional Networks For Learning Graphs.pdf
- file:Neural networks for relational learning- an experimental comparison.pdf
- file:Graphical-Based Learning Environments for Pattern Recognition.pdf
- file:How Powerful are Graph Neural Networks-.pdf
- file:Graph Partition Neural Networks for Semi-Supervised Classification.pdf
- file:Mean-field theory of graph neural networks in graph partitioning.pdf
- file:Graph Neural Networks for Ranking Web Pages.pdf
- file:Relational Inductive Biases, Deep Learning, and Graph Networks.pdf
- file:The Graph Neural Network Model.pdf
- file:Graph Neural Networks:A Review of Methods and Applications.pdf
- file:Deep Learning on Graphs- A Survey.pdf
- file:Geometric Deep Learning- Going beyond Euclidean data.pdf
- file:Computational Capabilities of Graph Neural Networks(1).pdf
- file:Neural Message Passing for Quantum Chemistry.pdf
- file:NetGAN- Generating Graphs via Random Walks(1).pdf
- file:MolGAN- An implicit generative model for small molecular graphs(1).pdf
- file:Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation.pdf
- file:Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search(1).pdf
- file:Representation learning for visual-relational knowledge graphs.pdf
- file:Dynamic Graph Generation Network- Generating Relational Knowledge from Diagrams.pdf
- file:Deep Reasoning with Knowledge Graph for Social Relationship Understanding.pdf
- file:Multi-Label Zero-Shot Learning with Structured Knowledge Graphs.pdf
- file:Knowledge Transfer for Out-of-Knowledge-Base Entities - A Graph Neural Network Approach.pdf
- file:Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering.pdf
- file:Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks.pdf
- file:The More You Know- Using Knowledge Graphs for Image Classification.pdf
- file:Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs.pdf
- file:Graph Convolutional Networks with Argument-Aware Pooling for Event Detection.pdf
- file:Jointly Multiple Events Extraction via Attention-based Graph.pdf
- file:Graph Convolutional Encoders for Syntax-aware Neural Machine Translation.pdf
- file:Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling.pdf
- file:Recurrent Relational Networks.pdf
- file:Exploring Graph-structured Passage Representation for Multi-hop Reading Comprehension with Graph Neural Networks..pdf
- file:A Graph-to-Sequence Model for AMR-to-Text Generation.pdf
- file:Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks.pdf
- file:End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures.pdf
- file:N-ary relation extraction using graph state LSTM.pdf
- file:Graph Convolution over Pruned Dependency Trees Improves Relation Extraction.pdf
- file:Learning Conditioned Graph Structures for Interpretable Visual Question Answering.pdf
- file:Self-Attention with Relative Position Representations.pdf
- file:NerveNet Learning Structured Policy with Graph Neural Networks.pdf
- file:Graph Convolutional Neural Networks for Web-Scale Recommender Systems.pdf
- file:Learning a SAT Solver from Single-Bit Supervision.pdf
- file:Attend, Infer, Repeat- Fast Scene Understanding with Generative Models.pdf
- file:Translating Embeddings for Modeling Multi-relational Data.pdf
- file:Interaction Networks for Learning about Objects, Relations and Physics.pdf
- file:Effective Approaches to Attention-based Neural Machine Translation.pdf
- file:Symbolic Graph Reasoning Meets Convolutions.pdf
- file:Learning to Represent Programs with Graphs.pdf
- file:Learning Human-Object Interactions by Graph Parsing Neural Networks.pdf
- file:Learning Multiagent Communication with Backpropagation.pdf
- file:Discovering objects and their relations from entangled scene representations.pdf
- file:Graph Convolutional Matrix Completion.pdf
- file:Metacontrol for Adaptive Imagination-Based Optimization.pdf
- file:Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks.pdf
- file:Graph networks as learnable physics engines for inference and control.pdf
- file:Inference in Probabilistic Graphical Models by Graph Neural Networks.pdf
- file:Visual Interaction Networks- Learning a Physics Simulator from Vide.o.pdf
- file:Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders.pdf
- file:A simple neural network module for relational reasoning.pdf
- file:Attention, Learn to Solve Routing Problems!.pdf
- file:GraphRNN- Generating Realistic Graphs with Deep Auto-regressive Models.pdf
- file:VAIN- Attentional Multi-agent Predictive Modeling.pdf
- file:Conversation Modeling on Reddit using a Graph-Structured LSTM.pdf
- file:Learning Deep Generative Models of Graphs.pdf
- file:A Compositional Object-Based Approach to Learning Physical Dynamics.pdf
- file:8-迁移学习效果对比.mp4
- file:6-shortcut模块.mp4
- file:7-加载训练好的权重.mp4
- file:9-训练多分类模型.mp4
- file:12-非线性决策边界.mp4
- file:8-整体流程debug解读.mp4
- file:2-计算得到簇中心点.mp4
- file:Kmeans算法模块概述.mp4
- file:3-预处理对结果的影响.mp4
- file:7-MiniBatch方法.mp4
- file:10-模型复杂度.mp4
- file:13-岭回归与lasso.mp4
- file:4-交叉验证实验分析.mp4
- file:3-树模型预剪枝参数作用.mp4
- file:4-不稳定结果_20190805_232028.mp4
- file:9-应用实例-图像分割.mp4
- file:6-如何找到合适的K值.mp4
- file:5-评估指标-Inertia.mp4
- file:mnist-original.mat
- file:GitHub地址.txt
- file:Adaptive Sampling Towards Fast Graph Representation Learning.pdf
- file:Inductive Representation Learning on Large Graphs.pdf
- file:Stochastic Training of Graph Convolutional Networks with Variance Reduction.pdf
- file:Rethinking Knowledge Graph Propagation for Zero-Shot Learning.pdf
- file:Graph-to-Sequence Learning using Gated Graph Neural Networks.pdf
- file:Modeling relational data with graph convolutional networks.pdf
- file:Graph Classification using Structural Attention.pdf
- file:Attention Is All You Need.pdf
- file:Sentence-State LSTM for Text Representation.pdf
- file:Gated Graph Sequence Neural Networks.pdf
- file:Deep Convolutional Networks on Graph-Structured Data.pdf
- file:Spectral Networks and Deep Locally Connected.pdf
- file:Bayesian Semi-supervised Learning with Graph Gaussian Processes.pdf
- file:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.pdf
- folder:AI精选付费资料包(37.4GB)
- folder:五:深度学习神经网络基础教程
- folder:六:计算机视觉实战项目
- folder:四:机器学习基础算法教程
- folder:二:AI必读经典书籍
- folder:一:人工智能论文合集
- folder:三:超详细人工智能学习大纲
- folder:GAN对抗生成网络基础
- folder:神经网络模型基础课件资料
- folder:04.Unet图像分割实战视频课程
- folder:06.YOLOV5目标检测课程资料
- folder:07.MASK-RCNN课程资料
- folder:05.OpenCV图像处理课程资料
- folder:【夸克网盘】手机新用户,2步立领1TB空间
- folder:01.机器学习经典算法精讲视频课程
- folder:CNN_不能错过的10篇论文
- folder:Resnet论文解读
- folder:CVPR行人重识别论文解读
- folder:图神经网络(GNN)100篇论文集
- folder:深度学习论文精讲-BERT模型
- folder:CNN+RNN+GAN
- folder:项目实战二:文档扫描OCR识别
- folder:项目实战三:全景图像拼接
- folder:项目实战五:答题卡识别判卷
- folder:第六章:物体检测-faster-rcnn
- folder:第一章:物体检测框架-MaskRcnn项目介绍与配置
- folder:第六章:逻辑回归代码实现
- folder:课程简介
- folder:第三章:模型评估方法
- folder:第十一章:决策树原理
- folder:第八章:聚类算法-Kmeans&Dbscan原理
- folder:第十章:聚类算法实验分析
- folder:部分代码资料
- folder:01.Python基础书籍
- folder:02.机器学习相关书籍
- folder:Models
- folder:Survey
- folder:Applications
- folder:课程安装软件-Win10
- folder:1-整体流程演示
- folder:4-透视变换结果
- folder:2-文档轮廓提取
- folder:2-RANSAC算法
- folder:2-图像拼接方法
- folder:5-模板匹配得出识别结果
- folder:4-输入数据处理方法
- folder:2-环境配置与预处理
- folder:2-所需数据介绍
- folder:5-按列划分区域
- folder:7-识别模型构建
- folder:6-车位区域划分
- folder:2-预处理操作
- folder:4-选项判断识别
- folder:2-网络架构概述
- folder:5-RPN层的作用与实现解读
- folder:3-生成框比例设置
- folder:7-论文解读-4-网络细节
- folder:1-三代算法-1-物体检测概述
- folder:第五章:必备基础-迁移学习与Resnet网络架构
- folder:3-完成训练数据准备工作
- folder:6-测试与展示模块
- folder:4-maskrcnn源码修改方法
- folder:6-逻辑回归实验分析
- folder:11-决策树代码实现
- folder:8-Kmeans代码实现
- folder:13-集成算法原理
- folder:1-线性回归原理推导
- folder:《Python基础教程(第3版)》
- folder:吴恩达《Machine Learning Yearning》完整中文版
- folder:21年最新-李沐《动手学深度学习第二版》中、英文版免费分享
- folder:training methods
- folder:graph_type
- folder:graph generation
- folder:combinatorial optimization
- folder:knowledge graph
- folder:science
- folder:2-迁移学习策略
- folder:2-训练模块功能
- folder:8-鸢尾花数据集多分类任务
- folder:6-梯度计算
- folder:4-优化目标定义
- folder:10-准备测试数据
- folder:1-多分类逻辑回归整体思路
- folder:5-迭代优化参数
- folder:9-多特征回归模型
- folder:4-算法迭代更新
- folder:5-数据集切分
- folder:2-递归生成树节点
- folder:14-实验总结
- folder:6-随机梯度下降得到的效果
- folder:8-不同策略效果对比
- folder:5-学习率对结果的影响
- folder:1-Sklearn工具包简介
- folder:3-交叉验证的作用
- folder:8-ROC曲线
- folder:2-决策边界展示分析
- folder:1-树模型可视化展示
- folder:8-Kmenas算法存在的问题
- folder:吴恩达MLY
- folder:neighborhood sampling
- folder:boosting
- folder:receptive field control
- folder:edge-informative graph
- folder:Region Classification
- folder:Semantic Segmentation
- folder:Interaction Detection
- folder:Visual Question Answering
- folder:Detection-PyTorch-Notebook
分享时间 | 2024-04-30 |
---|---|
入库时间 | 2024-09-05 |
状态检测 | 有效 |
资源类型 | QUARK |
分享用户 | 七七*享2号仓 |
资源有问题?点此举报